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Summary

The fundamental conservation-of-mass equation is derived for linear one-
dimensional chemical systems in which no lateral diffusion or rate control
exists. The theoretical results are applied to (a) a comparison of the fields
of chemical separations, thermodynamics, and kinetics; (b) the derivation
of a general equation for gradient elution and programmed temperature
chromatography; and (c) the description of three new carrier chromato-
graphic techniques, carrier magnetochromatography, solid phase carrier
electrochromatography, and inverse carrier electrochromatography. The
role of chemical equilibria in chromatographic systems is briefly discussed.

INTRODUCTION

In a keynote article in the first issue of Separation Science, Pfann
stated (I): “. . . advances in the field of separation and purification
have been retarded . . . because of the lack of a feeling of com-
monality on the part of the diverse disciplines involved. There is
much common ground for a science of purification. Major goals of
such a science, both in theory and in practice, can be: (1) to learn
how to perform single-stage separations more effectively, (2) to
seek new methods of producing concentration differences in a
system, (3) to seek new methods of utilizing countercurrent flow
and reflux, (4) to seek out and define the underlying unity of the
various classes of materials and methods involved, and (5) to ex-
press this underlying unity in basic, elementary theoretical form,
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much as thermodynamics underlies the various sciences today.
We need a Willard Gibbs for separation processes.” These com-
ments nicely summarize the current state of the field of chemical
separations as well as the growing interest in the unifying aspects
of all types of separation processes. Somewhat similar views have
recently been advanced by Giddings and Latimer (2) in their brief
introduction of this journal, Giddings and Keller (3), Pratt (4), and
Miller (5) in a brochure to a recent NSF-sponsored short course on
the theory of chromatography.

Although a single unifying theory of chemical separations does
not appear to exist, there is sufficient evidence from the voluminous
separation literature for one to be optimistic that the essential
aspects of the field can be presented (especially to students) with a
limited number of “simple unifying theories.” In pursuing such
theories, there is always the exciting possibility for the industrial
chemist that new separation techniques or improvements to exist-
ing ones can be predicted solely on the basis of the improved
theoretical approach to separation processes.

As a first step in the development of a unifying approach to the
field of chemical separations, a “separation index” must be found
that can, for any type of separation process, quantify the question:
How well have a pair of chemical components been separated?
One proposal for such an index has already been advanced (6-8).
Since the majority of separation processes involve physical and
chemical equilibria as the driving force for the separation of
components, the development of a unifying theory which would
allow one to discuss, characterize, and classify the simple chemical
aspects of all such processes (called partitioning separation
processes) would be an appropriate second step. This is the object
of the present article. Finally, there are a variety of nonpartitioning
separation processes [called kinetic processes by Pfann (1)], such
as thermal diffusion, mass spectroscopy, ideal electrophoresis,
and ultracentrifugation, that must be related theoretically to
partitioning processes. This will be done by the author at a later
date.

LINEAR MULTISTATE CHEMICAL SYSTEMS

A linear multistate chemical system, for present purposes, is as-
sumed to be a one-dimensional chemical system in which u, is
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the orthogonal curvilinear coordinate of interest. The term multi-
state refers to the fact that a chosen chemical component i in the
system equilibrates rapidly, in directions lateral to «,, among a
variety of different physical and chemical environments s. Super-
imposed upon these equilibria are the much slower rate processes
of diffusion, convection, and pseudo-first-order reaction that occur
in directions parallel to u,. The term linear refers to the assumption
that the concentrations of component i in the various lateral en-
vironments s, ¢;(uy,t), are all related to each other at any point u,
and time t by time-dependent linear partition coefficients, x(t).
When a component is present in a specific environment, it is pre-
sent either within a single phase or at only one type of interface
(otherwise, one or more additional environments must be defined).

The present article in some respects parallels developments in
physics many decades ago. For example, in the field of mechanics
and acoustics, Newton’s laws yielded lumped linear ordinary
differential equations with mass, compliance, and frictional re-
sistance as passive parameters and force, distance, and velocity
as time-dependent variables. Similarly, in the field of electronics
and electromagnetism, Maxwell’s laws were first linearized to
give linear partial differential equations and then lumped to give
linear ordinary differential equations with capacitance, induct-
ance, and resistance as passive parameters and voltage, charge,
and current as time-dependent variables. Both of the above fields
are elegantly treated by Harmon and Lytle (9).

The object of the present article is to derive the fundamental
linear partial differential equations of chemistry and to correctly
define the passive parameters—De, the effective dispersion co-
efficient, Vi, the effective molar velocity, and kieqr, the effective
pseudo-first-order rate constant—that appear in them. These
equations are idealized models and have, at best, only a limited
range of applicability (the same is true with the linear equations
of mechanics and electromagnetisin mentioned above). Existing
derivations of the linear conservation-of-mass equations (10-12),
however, are considerably more restricted than the present one.

NOMENCLATURE AND DEFINITIONS

A component is defined as one of the ingredients of a mixture or
one of the distinct atomic, molecular, ionic, or aggregative species
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composing a mixture. This term must be distinguished from a
similar term, constituent, which already has a relatively precise
thermodynamic definition [such as the one given by Findlay et
al. (I3)]. A component can be any chemical entity that participates
in reversible reactions.

The term environment refers to the immediate physical or
chemical environment of a specific component i and is denoted by
the symbol s. Examples of physical environments are gas, liquid,
or solid phases and interfaces between these phases. A chemical
environment is the specific chemical compound or surface site s
to or with which the component i is attached, bonded, complexed,
or associated. Each component in a chemical system is generally
found in a number of different environments, so it is convenient
to define the term partition state, which represents the chemical
state characterized by component i and environment s. In this

paper a partition state will be symbolized by the notation and
by the subscript is. An environment will be defined as long as a

. single component participates in it, so there will never be more

than imax Smax different partition states in a chemical system.

The distinction between a chemical reaction and a physical re-
action has been the subject of continuing controversy. We shall
consider a chemical reaction in the Dalton sense of the term as an
elementary reaction which can be represented by a stoichiometric
equation (where the stoichiometric coefficients are usually integers
whose magnitudes are less than 10). A physical reaction is a re-
action which, when all of the constituents are included, generally
cannot be represented by a stoichiometric equation. For example,
the dissolution of a gas in a liquid usually does not proceed in a
stoichiometric manner since 1 mole of gas does not dissolve for
every m moles of solvent (where m is an integer).

A chemical equilibrium is a chemical reaction in which the
chemical affinity is equal to zero. A physical equilibrium is a physi-
cal reaction in which the chemical affinity is equal to zero. Prigogine
and Defay present a discussion of the term chemical affinity (14).

The terms distribution and partition are used interchangeably
and defined as verbs instead of nouns: To distribute or partition a
component is to divide it among two or more different environ-
ments or, alternatively, to divide it among two or more of its
partition states. Rogers has given an excellent discussion of other
partition terminology (15). Following his suggestions, the dis-
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tribution coefficient, K, is defined as the ratio of the amounts of
component i in environments s and sref or, alternatively, as the

ratio of the amounts of partition states l i :sl and |£ :srefI:

Nig

K= (1)

Nigref

where sref is the index number of the reference environment, and
the partition coefficient, ki, is defined as the ratio of the concen-
trations of partition states i:s| and|i:srefl:

Cig
iy = i 2
¢ Cisref ( )

The partition coeflicient can also be defined with respect to the
interface between two phases. Thus the partition coefficient, i, is
defined as the ratio of the surface concentration of an interfacial
partition state to the volume concentration of partition state
[i:sref]:

Cls
Kl = —— 3
¥ Cisref ( )
The quantities ¢/, and «j; refer to an interfacial partition state and
thus have dimensions of moles/cm? and moles/cm?:moles/cm?,
respectively.

Several additional parameters that must be defined for the
chemical system are V, the total volume; A, the total cross-sectional
area lateral to the orthogonal coordinate u;; Vi, A s, and Sy, the
total volume, cross-sectional area, and surface area, respectively,
of the phase or interface in which partition state is contained.
It is more convenient, however, to employ fractional quantities
such as the volume fraction, e,

L = AJ.is
€1S AJ_ (4)
or
€= (5)

(in most situations these two definitions are equivalent), and the
surface fraction, o,
S,
T = _\L; (6)
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If A, 4, Vis, and S, are independent of the component, the subscript
i can be dropped:

B
€ = A, (7)
A
€ = v (8)
o =3 (9)
THEORETICAL

The three-dimensional conservation-of-mass equation (at con-
stant temperature and pressure) for component i in environment
s, that is, the conservation-of-mass equation for partition state

[i:s], is given by

aaitis = Dj; Vieyo+ ol Vo, + kisci + V1« Ny =0 (10)

where c;(u,,t) = molar concentration of partition state
Djy(115,u5,8) = local diffusion coeflicient of
kis(us,u3,t) = local pseudo-first-order rate constant of (it is
assumed here that the extent of reaction is suffi-
ciently small that the products do not perturb the

system)
N, i5(t42,u3,t) = molar flux of in direction lateral to u,
t = time

1, Uy, U3 = orthogonal curvilinear coordinates (u, and u; are
the “lateral” coordinates)
0fs(U4z,u3,t) = local molar velocity of due to convection,
forced diffusion (electric, magnetic, and gravita-
tional fields), pressure diffusion, and thermal
diffusion combined
V = gradient operator with respect to orthogonal co-
ordinate u,
V2 = Laplacian operator with respect to orthogonal
coordinate u,

To solve Eq. (10), we first integrate over the cross-section area,
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A, (us,us), lateral to the orthogonal coordinate u;:

f f 9Cis ga, — f f D}, V¢, dA, + f f ol Ve, dA,
Aw ALis

+f kg dAl+fj V.. N, dA, =0 (11)
AL A,

where it can be observed that integration over A, is equivalent to
integration over the effective cross-sectional area, A, ;, of the single
phase in which partition state[i:s] is contained. For Cartesian co-
ordinates (¥, = x, y, or z), cylindrical coordinates (u, = r or z), and
spherical coordinates (u, =r), the following relationships hold

(16):
d is d S
f f e 14, = 4, 22 (12)

f f Ky dA. = A, gki(t) (13)
A

f f ol Vi dA, = Vey j f vl dA, = Avyoi(t) Ve (14)

Al Avis

f f D, Ve, dA, = Ve, f Dj, dA, = A.Di(t) Ve, (15)
A Ay

where kis(t), v;5(t), and Dy(t), respectively, represent the local values
ki(ug,us,t), vis(us,us,t), and Djg(u,,u,,t) averaged over the cross-sec-
tional area A, ;(u,,u;3). Equations (13) to (15) do not hold for u, = ¢
in cylindrical coordinates and u, = ¢ or 4 in spherical coordinates,
but somewhat similar relationships (in which the derivatives of ¢;,
are separated from appropriately averaged values of ki, v, and
Dj;) can be derived.

We now sum Eq. (11) for component i over all environments
s=1,2, ... nand employ Egs. (12) to (15) to obtain

n

dc n n n
E A_L is atis - 2 AJ. isDis Vzcis + E AJ_isUis Vcis + 2 AJ.iskisCis
=1 =1 =1 =1

+ ” V.N,.dA, =0 (16)

If we have performed this summation correctly, the last term in the
equation will be proportional to the total lateral molar flux, which
will be assumed to have a value of zero:
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;fLMV-NLiSdALEo (17)

by Green’s theorem (impermeable lateral boundaries) or by sym-
metry (such as for a thin circular disk, sphere, or infinite membrane).

To remove the derivatives outside of the summations in Eq.
(16), we employ a linear relationship between ¢;; and Ciger, the con-

centration of reference partition state [i:sref]:
Cis = Kig (1) Cigres (18)

where k;(t) is a linear partition coefficient that can be a function
of time. With this assumption, Eq. (16) simplifies to

ac D1 AvLis (9K,5/0t) N AviskisDis
_—is—lﬁ + ci?ref - Vzcisref T—n
. n
ot 2?:1 AJ_isKis Es:l AL isKis
v 21;_-.1 AL isKisUis 2:=1 Ay iskisis 0 (19)
+ VCigret + Cisret =
2:=1 Al sk 2:=1 A K

An adiabatic multistate system (i.e., a system in which there are
only “slow” time perturbations relative to the rates of equilibration,
diffusion, convection, and reaction) will be defined as one in which
the second term in Eq. (19) is small:

2;;1 AJ.is (3K,~s/at)
n =0 (20)
zs=1 A.LisKis
If we drop the subscript ref (the choice of reference environment

is arbitrary) and define the “effective” parameters Die(t), Vien(t),
and ki.x(t) as

2;;1 A skisDis z;;l €15k D ZLI K.D;,
Die(t) = =" =
E:=1 A iKis 2:=1 €isKis 2:;1 K

=3 YuDy (21)
§=1

2:=1 AJ. 1sKisUis n
Viegt(t) = —————— = Y. v 22
ff( ) 2;,=1 AJ_isKis 2:1 isVis ( )
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n
2321 A skigkss n

kieit(t) = 77— = Yuki 23
! Z.’;:l A isKis s=1 (29)

Eq. (19) simplifies to
a_;f — Dien(t) Vieis + Vien(t) Vi + kienr(t)cis =0 (24)

which is the fundamental linear one-dimensional conservation-
of-mass equation for component i in an adiabatic multistate chemi-
cal system containing n different physical or chemical environ-
ments. The segregation fraction, Y, in the definitions for Dy,
Vierr and ki is the fraction of component i in environment s:

Kis‘ Nis
Y=g o=

n 0
23:1 Kis n;

The general linear multistate equations for the disciplines of
chemical separations, kinetics, and thermodynamics can easily be
obtained if the appropriate terms in Eq. (24) are neglected. These
equations thus become:

(25)

1. Chemical separations:

% — Diess(t) Vies + Vien(t) Ve, =0 (transient) (26)
—Diest Vi + Vi Veis = 0 (steady state) 27
2. Chemical kinetics and rate-controlled chemical separations:
acis :
m + ki (t)cis =0 (transient) (28)
¢is = constant (steady state) (29)

3. Diffusion-controlled chemical separations:

acis
5t ~ Dien(t) Ve =0 (transient) (30)
—Dierr Vic;; =0 (steady state) (31)

4. Convection-controlled chemical separation:
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aCis

3t + Vienr(t) Ve, =0 (transient) (32)
Viett YCi5=10 (steady state) (33)
5. Diffusion-controlled chemical kinetics:

% — Dyoy(t) Vicu + kien(t)cu =0 (transient)  (34)
—Diotr V2Cig + kierCis = 0 (steady state) (35)

6. Convection-controlled chemical kinetics:
%Cf + Vieff(t) Vcis + kieff(t)cis = 0 (tranSient) (36)
Viest Veie + kierrcis = 0 (steady state) (37)

7. Diffusion- and convection-controlled chemical kinetics:

aCiS _
ot

Diere(t) VEeis + Vien(t) Ve
+ kiegr(t) i =0 (transient) (38)
—Diet V2¢is + Vient Vei + KieniCis =0 (steady state)  (39)

8. Chemical thermodynamics:

kieff =0 (40)
Kiy = (41)
Cigref

Equations (26) through (41) demonstrate that there is a strong
thread of mathematical continuity between multistate chemical
kinetics, thermodynamics, and separations. As shown by Eq. (24),
this continuity is a consequence of the fact that they all have a
common mathematical origin—the conservation-of-mass equation
for a multistate chemical system. Equation (24) has a further sig-
nificance in that no assumptions regarding the chemical nature of
either the component i or the environments s=1,2, . . . , n have
been made.

Equation (26) is the fundamental equation for all linear multi-
state chromatographic systems. As Iong as Vier # Vierr, a mixture of
two chemical components injected as a single instantaneous pulse
at the entrance of a chromatographic system will eventually yield
two Gaussian elution peaks. It is not necessary to assume the
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existence of two phases (one stationary and the other mobile). In
fact, chromatographic behavior can occur within a single phase, as
will be discussed later.

REPRESENTATION OF PARTITION STATES

When there are many different environments in a chemical
system, it usually is quite cumbersome to repeat the conservation-
of-mass equation for each partition state

dC;s

€ ot — €D, VZCis + €505 Vcis

+ €5kiiCis ‘*‘ALL J’L VJ_ * N dA.L =0 (42)

where €, has been previously defined in Egs. (4) and (5). A short-
hand notation is desirable both to eliminate this inconvenience
and also to highlight more efficiently the specific characteristics of
the multistate system. Such a shorthand is now proposed.
Consider a component i in environments s = 1,2, . . . , n within
a multistate chemical system. The two equations which char-
acterize each partition state are the above conservation-of-mass
equation and the linear partition-coefficient equation [Eq. (18)].
There are a total of five physical parameters in these two equations
(Kis €5 Dis, Vg, and k;,). If the absolute magnitudes of these param-
eters are known as a function of time for all partition states , the
behavior of component i in the chemical system is completely
determined (subject, of course, to the initial and axial boundary con-
ditions). Therefore, rather than writing down the above equations
for each partition state in the system, we need only to find a con-
venient method for representing the above class of five physical
parameters. The following shorthand representation is suggested:

(Description of partition
state

Kig
€is
D is
Uis

k is

(at constant temperature
and pressure)
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Since the partition coefficient for the reference partition state,

[i:sref], is identically equal to 1 (by definition),
Kisret = 1 (43)

the representation of the reference state is slightly different from
the above:

(Description of reference

partition state )
1

€jaref

D isref
Visret

klure!

(at constant temperature
and pressure)

In the application of this type of representation, one additional
convention is employed: Whenever the value of any partition-state
parameter is independent of the nature of the component, the sub-
script i is deleted [as was done in Eqs. (7) through (9)]. In most
multistate chemical systems, the volume fraction, surface fraction,
and molar velocity all possess this particular characteristic. The
exceptions to this behavior usually occur in systems containing
molecular sieves or heavily cross-linked polymeric resins.

APPLICATIONS

Equations (26) through (41) are extremely general; examples of
their application to various chemical systems can be found through-
out the chemical literature. Some particular applications which
have recently been published include the mutarotation of tetra-
methyl-D-glucose in benzene [Eq. (28)] (17), supported liquid
phase and multiphase catalysts [Eq. (35)] (18), and steady-state
diffusion and flow tubes [Eqgs. (35), (37), and (39)] (19). In the
present article, however, we shall be concerned only with partition-
ing chromatographic systems.

GRADIENT ELUTION CHROMATOGRAPHY

Probably the most powerful chromatographic techniques known
today are those which come under the general heading of gradient
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elution chromatography. In addition to gradient elution solid-
liquid and liquid-liquid chromatography, where the chemical
composition of the eluting solvent is changed as a function of time,
there is the extremely versatile technique of programmed-tempera-
ture gas-liquid chromatography, where the temperature of the
chromatographic column is slowly increased to accelerate the elu-
tion of the slower moving components. Horvath and Lipsky (20)
have recently pointed out that one can obtain almost an order-of-
magnitude improvement in peak capacity over regular elution
chromatography by applying gradient elution techniques. We shall
now derive a general solution for gradient elution chromatography
in multistate chemical systems.

We start with the fundamental conservation-of-mass equation
for a transient multistate separation system (in cylindrical coordi-
nates, where u; = z):

dCi\ d%cis\ 9Ci
(5%). = Deatt) (52) = Vit (55%) (44)
By defining a new parameter y;,
dy; = dz — Viex(t) dt (45)
or
t
w=z= [ Vialt) dt (46)
we can successively employ the definition for the total differential
Bc,-s Bcis
dCis = (ayl)t dyl + ( ot )y‘ dt (47)
to obtain
60,-3 _ 80,-8 %
(). =Vt () (30), )
aC;, _ 0C;s
<az)t_ <6yi>t (49)
(_"’L) _ (6_0 50
0z* /i \ oyt )z 50
Thus Eq. (44) can be converted to
dCi\ 0%C;s
(%) =Dun®) (7). (51)
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or simply

azcis
oy}

0C;s

T Djer(t) (52)
For chromatographic systems, Eq. (52) can be solved for an

instantaneous pulse, 8(y,), at y; = 0 to yield (21)

Ciy = _n‘,-’,; exp ( yi ) (53)
T, Vo 2a%

where g; is the standard deviation of the elution peak

=2 f Dia(t) dt (54)

and the retention length and time are

t
2o = f Vien(?) dt (55)

tﬂl
L= f Vien(t) dt (56)

respectively (22).

Equation (53) is the most general equation derived to date for an
ideal chromatographic system. It is valid for any type of linear
physical or chemical equilibrium and any adiabatic time-dependent
change in Vi, such as a time-varying partition coeflicient, «(t);
molar velocity, vy(t); or volume fraction, €(t) (the first two types of
time-dependent parameter changes are well known, but apparently
few, if any, attempts have been made to decrease the stationary-
phase volume fraction as a function of time to isothermally ac-
celerate the elution of the slower moving components).

CARRIER CHROMATOGRAPHY

As stated in any textbook or review article (23) on the subject of
chromatography, there are only four different types of chromato-
graphic systems: gas-liquid (GLC), gas-solid (GSC), liquid-liquid
(LLC), and solid-liquid (SLC). Each of these systems is distin-
guished by the fact that the migrating components distribute be-
tween two phases. Almost any type of migrating component is
amenable to separation by at least one of these techniques: small,
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volatile, and nonionic molecules by GLC and GSC and large,
nonvolatile, and ionic molecules by LLC and SLC. Giddings,
however, makes the interesting point that, in the separation of
macromolecules, “in all but exceptional circumstances, Au® [the
change in chemical potential for the transfer of a mole of solute
between a mobile and a stationary phase] is a very large positive
or negative quantity compared to RT” (24). Consequently, k;, the
partition coeflicient for the macromolecule,

Kkis < exp (—Au'/RT) (57)

is a very small or very large number and “separation fails to occur
at a measurable rate” or “resolution is destroyed” (24). To circum-
vent this problem, Giddings has proposed a new type of chromatog-
raphy, called field flow fractionation, which is a single-phase
technique that is dependent upon lateral thermal, electric or gravi-

Physical and Chemical Egquilibria:

T ) — . +
e + L <= itL] + |
ottached to {iquid dissolved in carrier ion

carrier ion liquid

Schematic Diagram of Apparatus:

stationary solid

stationary matrix
luquld/
c‘o ?

3 :
WM;J f‘m

moblle carrier ion

FIG. 1. Schematic representation of the equilibria and the apparatus in
carrier electrochromatography.
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Partition States:

1. Attached to 2. Dissolved in
carrier lon liquid
| K
€ | — €|
P

D|| DIZ
Vi 0]

Migration Velocity and Dispersion Coefficient:

viI

Left | + K

Di+ xi2Di

Di.ff I + Kiz

FIG. 2. Schematic representation of the partition states and formulas for
Vet and D,y in carrier electrochromatography.

tational fields for the separation of macromolecules (25,26). We
would like to offer an alternative solution to the problem of separat-
ing macromolecules by describing a fifth type of chromatography—
carrier electromatography—that is, a single-phase partitioning
chromatographic technique.

As shown in Figs. 1 and 2, the migrating component i distributes
between stationary and mobile environments (the former being the
liquid phase and the latter being a mobile carrier ion) that are pre-
sent within a single phase. The difference between ideal (no par-
titioning on solid surfaces) electrophoresis and carrier electro-
chromatography can be demonstrated with the aid of Fig. 2. In
electrophoresis, there is no partitioning between the migrating
component i and the carrier ion; component i is either itself an
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ion and can migrate uncomplexed in the electric field (a trivial
case) or else it is so tightly complexed to the carrier ion (k;; = 0)
that there is essentially no uncomplexed component present. In
the latter case, there is only one partition state and the migration
velocity of the component is simply given by

Viett = Uut (58)

where v; is the mobility (in cm/sec) of the complex. In carrier
electrochromatography, the migration velocity of the distributing
component is given by

Ui

Viett = T+ r,

(59)
and the separation is determined not only by the value of v; but
also by the value of the partition coeflicient k;,.

Carrier electrochromatography is not a new chromatographic
technique. While we do not wish to engage in a discussion of
priorities, one of the earliest examples appears to be the work of
Consden and Stanier (27), who separated monosaccharides in an
aqueous borate medium:

dissolved borate Y%t monosaccharide-borate
monosaccharide ion ionic complex

(migrating {carrier (complex)

component) ion)

It should be observed that the monosaccharides (sugar molecules)
are neutral molecules and are thus unaffected, when dissolved in
water, by an electric field. However, if the partition coefficient is
finite and has a value ranging between about 0.1 and 10, a carrier
electrochromatographic separation can be achieved. The impor-
tance of the formation of the complex can be demonstrated if a
similar separation is attempted in an aqueous chloride medium:

dissolved chloride Y% monosaccharide—chloride
monosaccharide ion complex

In this case, k;, is infinite and no separation is observed. This type
of behavior can be and has been extended to a variety of mole-
cules, such as amino acids

amino acid + H* —= amino acid H*

(migrating (“carrier (“complex™)
component) ion™}
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and alkaloids
alkaloid + H* = alkaloid H*
{migrating (“carrier (“complex™)
component) ion”)

The technique is extremely general.

In its application to macromolecular separations, we envision
a number of interesting possibilities: (a) the use of carrier macro-
molecules such as polypeptides, proteins, synthetic polymers, and
the like; (b) the use of carrier micelles and colloids; and (c) the use
of proteins fixed to a stationary surface and carrier proteins of
similar chemical constitution. In each of these cases, advantage is
taken of multiple adsorption sites on the carrier ion to selectively

Physical and Chemical Equilibria:

. + . +
L + E <= [ItE|l + L

dissolved in enzyme complexed with liquid
tiquid enzyme

Schematic Diagram of Apparatus:

stationary liquid7

‘li ©—>®->'5|_
+
+

anode |3 ? o> =|| cathode
mobile enzyme

FIG. 3. Schematic representation of the equilibria and the apparatus in in-
verse carrier electrochromatography (with enzyme as carrier).
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Partition States.

|. Dissolved in 2.Complexed with
liquid enzyme
| Kiz
6, e €|
-

Di Diz
0O Viz

Migration Velocity and Dispersion Coefficient:

V Kiz Viz
loft | + Kiz

Dn + Kiz Diz
| + ki

Dim =

FIG. 4. Schematic representation of the partition states and formulas for
Vier and Diey in inverse carrier electrochromatography (with enzyme as
carrier).

partition macromolecules of different chemical constitution. With
the recently developed Merrifield solid phase synthetic peptide
technique (28-30), it is quite feasible to prepare quantities of
polypeptide oligomers (of specified chemical constitution) that can
ben employed as carrier ions.

In a related carrier technique, inverse carrier electrochromatog-
raphy, a group of neutral migrating components are employed to
characterize the chemical nature of the mobile ionic carrier. This
technique is illustrated in Figs. 3 and 4, where the carrier ion is an
enzyme. Since the neutral components are separated on the basis
of their binding constants with the enzyme, a carefully chosen
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group of weakly complexing molecules can aid in the characteriza-
tion of the carrier by forming a distinct elution “enzyme finger-
print.” This technique can be extended to colloidal particles,
charged micelles, biological cells, viruses, and any type of highly
dispersed ionic substance that is difficult to characterize by other
techniques.

Solid phase carrier chromatography, or simply solid phase chro-
matography, is apparently a new type of carrier chromatographic
technique. As shown in Fig. 5, the chromatographic “column” is
a thin polymeric or biological membrane placed between the
closely spaced electrodes of, essentially, an electrophoresis ap-
paratus. Migrating components are injected into the liquid space
on one side of the membrane and migrate through it as solid-soluble
complexes with a mobile ionic carrier, which is usually a low mo-
lecular weight ion. Inside the membrane, distribution of the migrat-
ing components occurs between the mobile carrier and the station-

Physical and Chemical Equilibria:

Il + s = l|iis| + T

attached to solid dissolved in carrier ion
carrier lon solid

Schematic Diagram of Apparatus:

stationary solid

yd mobile carrier lon

p

anode cathode

19

FIG. 5. Schematic representation of the equilibria and the apparatus in
solid phase carrier electrochromatography.
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Partition States:

{. Attached to 2. Dissolved in
carrier ion solid
| K;2
€, —= €|
pu—

Di Di.
Vi 0

Migration Velocity and Dispersion Coefficient:

_ Vil
\/loﬂ B

| + K2
D - D;|+ Klz Diz
fotf I +K|2

FiG. 6. Schematic representation of the partition states and formulas for
Vier and Dieyr in solid phase carrier electrochromatography.

ary solid phase (and perhaps a liquid phase, if present). There are
thus at least two partition states per migrating component (see
Fig. 6).

Solid phase chromatography is based upon the concept of “active
transport,” which was proposed for biological systems as early as
1890 by Pfeffer (31). Freundlich and Gann performed a vivid ex-
periment fifty years ago which clearly demonstrated the principle
of carrier transport (32). The concepts of active transport, carriers,
and carrier processes are still frequently postulated to account for
unusual membrane transport behavior in biological systems. Shean
and Sollner have recently illustrated the carrier principle in their
experiments with liquid ion-exchangers (33).
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In addition to organic and biological membranes, other solid
materials such as glass can be employed as the solid matrix. This
technique should facilitate the study of biological carrier systems
and ‘might eventually lead to small component-specific analytical
probes similar to the ion-specific glass electrodes.

Carrier magnetochromatography, another new carrier technique
(Figs. 7 and 8), may represent the first use of a magnetic field for the
chromatographic separation of chemical components. Like carrier
electrochromatography, the migrating component distributes be-
tween a stationary liquid phase and a mobile carrier particle. In
this technique, however, a magnetic field is employed instead of
an electric field and the carrier particle is magnetic rather than
ionic. The chromatographic column can be a glass tube packed with
a porous adsorbent, a piece of filter paper impregnated with a
liquid, or a thin layer of a porous solid deposited on an impermeable

Physical and Chemical Equilibria:

itM[ + L <= [|iiL]l + M

attached to liquid dissolved in magnetic
magnetic colloid liquid collold

Schematic Diagram of Apparatus:

stationary solid
matrix

Sol N or S

mobile magnetic
colloid

otlonar
lis;uld y

FIG. 7. Schematic representation of the equilibria and the apparatus in
carrier magnetochromatography.
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Partition States:

1. Attached to 2. Dissolved in
magnetic colloid liguid
[ Kiz
‘I — €|
-—

Dll DiZ
Vi 0

Migration Velocity and Dispersion Coefficient:

Vi

ioff I + K2

Dn + K2 D|2

I + Ki2

D,

FIG. 8. Schematic representation of the partition states and formulas for
Viets and Doy in carrier magnetochromatography.

surface. Rosensweig et al. have described the preparation of stable
colloidal suspensions of various ferrites in kerosene (34). However,
they worked with relatively concentrated suspensions and took
steps to minimize particle sedimentation by a magnetic field, con-
ditions exactly opposite to those required for carrier magneto-
chromatography.

CHEMICAL EQUILIBRIA IN CHROMATOGRAPHY

Most chromatographic separation techniques (excluding those
based upon ion exchange and complexation or hydrogen bonding)
employ physical reactions, such as adsorption on a surface or dis-
solution in a liquid, to achieve the separation of chemical com-
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ponents. In Egs. (21) through (24), no distinction is made between
physical or chemical equilibria, so it is clear that a variety of chem-
ical reactions can, in principle, be used as the basis of subtle, selec-
tive, and sophisticated chromatographic separations. Bradford
et al. (35) were the first to use a complexation equilibrium—the
reaction of silver ion with an olefin to form a silver-olefin = complex
—as the basis of a separation in gas-liquid chromatography. Karger
(36) has summarized the work in this area and Purnell (37) has
provided a theoretical treatment for such complexing reaction
systems.

There are only two main requirements for the use of chemical
reactions in chromatographic systems: (1) They must be rapid and
reversible (conditions which frequently exist or can be achieved
with the aid of catalysts) and (2) the equilibrium constant for the
reaction must have an appropriate magnitude. Since chemical re-
actions are far more sensitive to chemical constitution than physical
reactions, the exciting possibility exists (provided the above re-
quirements are met) that the use of chemical reactions may quickly
and easily solve some of the more difficult separation problems that
are currently encountered.

We can obtain a rough estimate of the magnitude of the equi-
librium constant required according to the following arguments.
Let us, for simplicity, consider a gas-liquid chromatographic
system in which the migrating component i distributes between
three different partition states:

iN | = | iN

in gas in liquid
+
M

|

iM

in liquid
+
N.
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where M and N are exchangeable segments of the component and
K., is an equilibrium constant for the exchange reaction (we shall
assume that the activity coefficients are all equal to 1):

— CimCN (60)

€q
CinCym

The migration velocity of the component i is

p— U]
Viet = TE KT+ (Keatwlon) ] oy

where v, is the velocity of the mobile gas phase and K; is a gas-
liquid distribution coefficient (dimensions of moles/moles). Ac-
cording to Giddings (24), the optimum range for the migration ratio,
View/Us, is between 0.1 and 0.9. This range corresponds to the
inequality
0.1<K; <9 (62)
when K.,y = 0 and to
0.1 <K, (1 + %) <9 (63)
N

when Kcm # 0. This latter inequality can be rearranged to give

(g.l_l)_c_N<Keq<<2_1)C_ (K; < 0.1) (64)
Cm i Cm

X, K
and
9 CN
0<Keq<(f—1)— (0.1=K =9) (65)
i Cm

Clearly, a wide range of K., values can be employed in chromato-
graphic systems, provided only that we do not saturate any of the
partition states and that we carefully choose the values of cy, cy,
and perhaps K; The chemical reactions which appear to be the
most interesting candidates for chromatographic systems include
oxidation-reduction reactions (38), proton-exchange reactions
(39), and protonation-deprotonation reactions (40,41). Proton-
exchange GLC may provide a rapid method for measuring the
equilibrium acidities of a wide variety of organic molecules. A
potentially feasible GLC separation process for the three xylene
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isomers is one in which a low molecular weight polymethylstyrene
carbanion is dissolved in a nonvolatile nonacidic liquid.

SUMMARY AND CONCLUSIONS

While the Van Deemter equation is widely considered to be the
fundamental equation for the physical aspects of practical chro-
matographic systems, Eq. (26) is the fundamental equation for the
chemical aspects of ideal linear chromatographic systems. The
principles described in this article have been applied elsewhere
(38) to the description of at least 33 different chromatographic
systems (or variations thereof), including the standard techniques
as well as a number of potentially novel techniques, such as carrier
chromatography, aerosol chromatography, fiber chromatography,
and membrane chromatography. These principles can also be
applied to other linear partitioning separation processes such as
a single equilibrium stage, a multistage column, the Craig counter-
current apparatus, coupled one-dimensional linear systems, and
two-dimensional linear systems. In the extension of these ideas to
more complicated systems, it is not the concepts that are limiting,
but rather our ability to solve more complicated multistate conser-
vation-of-mass equations.
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List of Symbols

A, total lateral cross-sectional area (cm?)

¢ volume concentration (moles/em?)
surface concentration (moles/cm?)

D diffusion coeflicient (cm?/sec)
Diest effective dispersion coeflicient (cm?/sec)

partition state consisting of component { in environment s
k pseudo-first-order rate constant (sec™)
Kiete effective pseudo-first-order rate constant (sec™)
K distribution coeflicient (moles/moles)
Koq equilibrium constant
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L total axial length (cm)

n number of moles (moles)

N, molar flux in lateral direction (moles/cm? sec)
r  orthogonal coordinate in cylindrical or spherical systems
S total surface area (cm?)
t time (sec)

tr retention time (sec)

U, principle orthogonal coordinate of linear multistate

system
Uy, Uy orthogonal coordinates lateral to u,

v molar velocity (cm/sec)

\% total volume (cm?)
Viest effective molar velocity (cm/sec)
x  orthogonal Cartesian coordinate
y orthogonal Cartesian coordinate
Y quantity defined by Eq. (42)
Y  segregation fraction
z  orthogonal Cartesian or cylindrical coordinate
Zr retention length

Greek letters

volume fraction (cm?®/cm?® or cm?/cm?)

orthogonal spherical coordinate

partition coeflicient (moles/cm?®: moles/cm?)

partition coeflicient defined with respect to a surface (moles/
cm?:moles/cm?®)

T surface-to-volume fraction (cm?:cm?)

o; standard deviation of a Gaussian peak (cm)

¢  orthogonal spherical or cylindrical coordinate

x> a

Superscripts
0 initial value

local value

Subscripts

i component {
is component { in environment s (i.e., partition state

[i:s])
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isref component i in reference environment sref
s environment s
sref reference environment

il, 12,13, etc. speciﬁc partition states

LS S

10.
11.
12.
13.
14.
15.
16,
17.
18.
19.

20.
. J. Crank, The Mathematics of Diffusion, Qxford-Clarendon, New York, 1964,

22,
23.
24,
25.
26.

27.

© N> @

1,2,3 specific phases
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